Credit Hours: 3.00. An introductory course to machine learning, with a focus on supervised learning using linear models. The course will have four parts: (1) mathematical background on linear algebra, probability, and optimization. (2) classification methods including Bayesian decision, linear regression, logistic, regression,
and support vector machine. (3) robustness of classifier and adversarial examples. (4) learning theory on the feasibility of learning, VC dimension, complexity analysis, bias-variance analysis. Suitable for senior undergraduates and graduates with a background in probability, linear algebra, and programming.Credits: 3.00