Dec 02, 2022  
2022-2023 University Catalog 
    
2022-2023 University Catalog

Environmental and Ecological Engineering, BSEEE


About the Program

The Environmental and Ecological Engineering program is accredited by the Engineering Accreditation Commission of ABET.

Environmental and Ecological engineers use the principles of systems engineering, biology, and chemistry to develop strategies to protect human and environmental health, and design sustainable systems and technologies. Our unique name, Environmental and Ecological Engineering, was chosen to highlight our approach to managing complex problems with an integrated perspective that considers both environmental issues and ecological interactions. In the undergraduate curriculum there is an early focus on systems thinking and systems understanding with the inclusion of significant course requirements in ecology, sustainability, and industrial sustainability. The EEE program strives for resilient design thinking that takes into account complexity and connectivity between systems.

Employment opportunities for EEE graduates are excellent. Most businesses, industries, all levels of government and many international organizations hire environmental and ecological engineers.  Graduates are prepared to enter a wide-range of employment sectors in environmental and engineering fields including the industrial and construction, government, consulting, municipal and public service, non-governmental organizations (NGOs) and education sectors. Common career pathways center around:

  • Water and Watershed Stewardship: Ensuring that engineered systems and ecological systems interact sustainably.
  • Pollution Control, Monitoring, Abatement and Remediation: Wastewater, soil and air treatment/control, industrial waste control and recycling.
  • Industrial Sustainability: Optimize industrial resource use; analyze and control of complete life-cycles of materials; industrial system redesign; energy efficiency optimization.
  • Sustainability: Provide for current needs without sacrificing future ability to meet needs. Consider the whole system, including complex interactions of environmental, technological and societal systems.
  • The U.S. Dept. of Labor projects substantial growth in jobs for the foreseeable future. Starting salaries are comparable to other Engineering fields and opportunities for advancement to positions of responsibility are excellent. Among the 14 “Grand Challenges of Engineering” announced by the National Academy of Engineering six of the 14 are explicitly in the domain of Environmental and Ecological engineering. Environmental engineering has a clear impact on societies and quality of life. Students interested in engineering that can make a positive difference for people should consider Environmental and Ecological Engineering. Meet with an advisor or faculty member to craft an individualized plan of study to meet your career goals.
  • Research within Environmental and Ecological Engineering may be characterized as being multidisciplinary and focused on cutting edge issues. The EEE discovery mission is positioned to respond to society’s need to understand the world we live in, and to develop strategies for sustainably managing Earth’s limited resources and ecosystems so that they will be available for generations to come. Topics emphasized within the EEE research portfolio include: environmental fate of air, water, and soil contaminants; sustainable urban design; renewable energy and the water-energy nexus; water and wastewater treatment; sustainable industrial systems; water, air, and nutrient cycling; sustainability engineering education; bio-based materials and products; industrial sustainability and industrial processes; air quality.

Environmental and Ecological Engineering Major Change (CODO) Requirements  


Mission Statement

The Division of Environmental and Ecological Engineering (EEE) furthers the learning, discovery, and engagement missions of the Purdue College of Engineering with a focus on understanding the ways in which all engineering activities affect and are affected by the environment. EEE will help the College fulfill the responsibility of service to the state, the nation, and the world through innovative and comprehensive undergraduate and graduate education, collaborative and wide-reaching research and discovery, and the assumption of ever-greater levels of leadership in addressing global environmental and ecological problems.


Program Educational Objectives

Graduates of the EEE Undergraduate Program will:

  1. Be prepared to assume immediate employment in the field of environmental and ecological engineering or to continue education in an advanced degree program;
  2. Participate fully & ethically in the advancement of the profession within five years of graduation, as measured by one or more of the following:
    1. Achievement of, or significant progress toward, professional licensure
    2. Achievement of, or significant progress toward, an advanced degree
    3. Publication of research results and/or field reports
    4. Advancement to a leadership role within an engineering organization
    5. Advancement to a leadership role within organizations, agencies, or companies who offer solutions to major societal and environmental issues

Program Outcomes

Upon graduation, graduates of EEE will show:

  1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
  3. An ability to communicate effectively with a range of audiences.
  4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
  5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
  6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
  7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Degree Requirements


128 Credits Required

Departmental/Program Major Courses (49 credits)


EEE Selectives (18 credits)


  • EEE Selective 1 - Category A - Credit Hours: 3.00
  • EEE Selective 2 - Category B - Credit Hours: 3.00
  • EEE Selective 3 - Category C - Credit Hours: 3.00
  • EEE Selective 4 - Credit Hours: 3.00
  • EEE Selective 5 - Credit Hours: 3.00
  • EEE Selective 6 - Credit Hours: 3.00​

More information about specific requirements: Major Selective Courses, Technical Electives, and No Count List   

Technical Electives (5 credits)


  • Technical Elective 1 - Credit Hours: 2.00
  • Technical Elective 2 - Credit Hours: 3.00

More information about specific requirements: Major Selective Courses, Technical Electives, and No Count List  

Other Departmental/Program Requirements (75-85 credits)


First-Year Engineering Requirements (29-39 credits)


Click here for First-Year Engineering  requirements.

(If pursuing Bachelor of Science in Environmental and Ecological Engineering, CHM 11600 - General Chemistry is required to graduate, but not required to complete the First Year Engineering program.)

  • Requirement #1 - Intro to Engineering I (2-4 credits)
  • Requirement #2 - Intro to Engineering II (2-4 credits)
  • Requirement #3 - Calculus I (4-5 credits) (satisfies Quantitative Reasoning for core) 
  • Requirement #4 - Calculus II (4-5 credits) (satisfies Quantitative Reasoning for core) 
  • Requirement #5 - Chemistry I (4-6 credits) (satisfies Science #1 for core)
  • Requirement #6 - Physics (4 credits) (satisfies Science #2 for core)
  • Requirement #7 - First-Year Engineering Selective (3-4 credits)
  • Requirement #8 - Written and Oral Communication (6 credits) (could satisfy Written Communication, Information Literacy or Oral Communication for core)

EEE General Education Requirement (18 credits)


  • General Education Requirement - Human Cultures: Humanities - Credit Hours: 3.00 (satisfies Human Cultures: Humanities for core)
  • General Education Requirement - Human Cultures: Behavioral/Social Sciences - Credit Hours: 3.00 (satisfies Human Cultures: Behavioral/Social Sciences for core)
  • General Education Requirements - Intersection of Society and Environment - Credit Hours: 3.00 (see supplemental information for list of courses)
  • General Education Requirements - Credit Hours: 9.00

General Education Requirements must include: 

  • Six (6) credit hours must come from courses that are upper-level (30000-level or above) or from courses with a pre-requisite within the same department. More information about General Education Requirement courses can be found on the Supplemental Information link; See Non-Introductory list. 
  • Twelve (12) credit hours must be taken from the College of Liberal Arts, and/or the Honors College provided such courses are not focused primarily on engineering, technology, the natural sciences, or mathematics.  
  • Nine (9) credit hours must be taken from courses offered by the departments of Agricultural Economics, Economics, Communication, Foreign Languages and Literatures, History, Interdisciplinary Studies, Philosophy, Political Sciences, Psychological Sciences, or Sociology and Anthropology in order to ensure sufficient exposure to topics dealing with global, societal and contemporary issues. 

 

More information about Environmental & Ecological Engineering (EEE) General Education Requirements  

Click here to view Subject Codes by College and Department

 

Elective (3 credits)


  • Elective - Credit hours: 3.00

University Requirements


University Core Requirements


For a complete listing of University Core Course Selectives, visit the Provost’s Website.
  • Human Cultures: Behavioral/Social Science (BSS)
  • Human Cultures: Humanities (HUM)
  • Information Literacy (IL)
  • Oral Communication (OC)
  • Quantitative Reasoning (QR)
  • Science #1 (SCI)
  • Science #2 (SCI)
  • Science, Technology, and Society (STS)
  • Written Communication (WC)

Civics Literacy Proficiency Requirement:


The Civics Literacy Proficiency activities are designed to develop civic knowledge of Purdue students in an effort to graduate a more informed citizenry.

Students will complete the Proficiency by passing a test of civic knowledge, and completing one of three paths:

  • Attending six approved civics-related events and completing an assessment for each; or
  • Completing 12 podcasts created by the Purdue Center for C-SPAN Scholarship and Engagement that use C-SPAN material and completing an assessment for each; or
  • Earning a passing grade for one of these approved courses (or transferring in approved AP or departmental credit in lieu of taking a course)

For more information visit the Civics Literacy Proficiency website.



Prerequisite Information:


For current pre-requisites for courses, click here.


First Year Engineering Program Requirements


Fall 1st Year


13-14 Credits


Spring 1st Year


16 Credits


Environmental and Ecological Engineering Program Requirements


Fall 2nd Year


17 Credits


16 Credits


18 Credits


14 Credits


Fall 4th Year


16 Credits


Spring 4th Year


16-17 Credits


Notes


  • Students must have 32 credits at the 30000 level or above taken at Purdue.
  • 2.0 Graduation GPA required for Bachelor of Science degree.
  • 2.0 GPA required in College of Engineering courses at the 20000-level and above.
  • No course for the BSEEE may be taken pass/no pass. The Academics Committee will entertain petitions for necessary exceptions, such as circumstances with study abroad or transfer courses.
  • A maximum of 6 credits total of EPICS, GEP and/or VIP may be counted toward the BSEEE. This does not include courses contributing to FYE Requirement #1 and #2.
  • A maximum of 10 credits from another university or a regional campus may be used as substitutes for Required Major Courses in EEE. Students may not receive transfer credit for EEE 48000. A maximum of 9 credits from another university or a regional campus may be used as EEE Selective.

Critical Course


The ♦ course is considered critical.

In alignment with the Degree Map Guidance for Indiana’s Public Colleges and Universities, published by the Commission for Higher Education (pursuant to HEA 1348-2013), a Critical Course is identified as “one that a student must be able to pass to persist and succeed in a particular major.  Students who want to be nurses, for example, should know that they are expected to be proficient in courses like biology in order to be successful.  These would be identified by the institutions for each degree program”. 

Disclaimer


The student is ultimately responsible for knowing and completing all degree requirements.

The myPurduePlan powered by DegreeWorks is the knowledge source for specific requirements and completion.